Place Value as a Red Herring: How to "Invent" Positional Notation

Dr. Elon Kohlberg
Harvard University

Traditional Approach

Counting View

- One-by-one progression of the numbers
- Odometer (non-digital) shows each turn of the number 1
2
3

099
100
101

Traditional Approach

- Place Value

Reinterpret the digits
$263=2 \times 100+6 \times 10+3 \times 1$

- Power View

View Ones, Tens, Hundreds, ... as "things" $263=2 H 6 T 30$

- Advantages of the power view
[2 H 6 T 3 O$]+[2 \mathrm{H} 3 \mathrm{O}]=4 \mathrm{H} 6 \mathrm{~T} 6 \mathrm{O}$
- There are many opportunities for children to get lost along the way
- The pattern of the count is not obvious (0-9 not 1-10)

7	But not	207
8		208
9		209
10		2010

- The place-value lesson relies on knowledge of addition and multiplication

$$
263=200+60+3=2 \times 100+6 \times 10+3 \times 1
$$

Traditional Approach

Organization in Ones, Tens, Hundreds, ... 2H 6 T 30

Quantity
263

Alternative Approach

Organization in Ones, Tens, Hundreds, ...

Quantity
Positional Notation 263

Alternative Approach

- Learn the digits

1, 2, ..., 9

- Organize any given collection of blocks into Ones, Tens, Hundreds, ... with no more than nine of each

Alternative Approach

- Write a digit (1-9) to show how many of each size block (i.e., each power of ten)

(= 263)

1!

Key Question

- If we wish to use the same digits (same size, same color) for every power-often, how can we tell which digit relates to which size?
- There are many possible solutions
e.g. $5 \mathrm{~T}^{3} 4 \mathrm{~T} 3=5,043$

Positional notation with zero as a placeholder is beautiful and ingenuous but it is not the only way

Advantages of the Approach

- Fewer chances to get lost
- Positional notation arises on a solution to a problem
- Zero is not a mystery but a clever device

Advantages of the Approach

Key for making the approach workable:
A direct way of organizing a quantity (of blocks) in powers of ten.

- This was the motivation for developing Digi-Block
- Ten singles pack to make a block of ten
- Ten tens pack to make a block of one hundred
- Need only a single instruction:
- Pack as much as possible!

Take a collection of blocks

Pack the single blocks into blocks-of-10 Until there are nine or less blocks remaining

Pack the blocks-of-10 into blocks-of-100 until there are nine or less blocks-of-100 remaining

Once blocks are packed as much as possible, a single digit $(0-9)$ can be set in each place

The progression shown in bright colors blocks

Thousands

Hundreds

Can be represented by color rather than position at young ages

A Digi-Block train showing 34 blocks organized into 3 tens and 4 ones

Thirty-one,

The blocks can be counted by ones until the student "discovers" the shortcut of counting by tens

Presentation will be posted on

 www.digi-block.com